The method of differential contractions
نویسنده
چکیده
In this Note we present a general and fairly simple method to design families of contractions for nonlinear partial differential equations, either of evolution type, or of stationary type. As a particular example, we apply this method to the porous medium equation, for which we get new contractions. This method opens new directions to explore. Résumé La méthode des contractions différentielles. Dans cette Note, nous présentons une méthode simple et générale pour fabriquer des familles de contractions pour des equations aux dérivées partielles non linéaires, d’évolution ou bien stationaires. A titre d’exemple, cette méthode est appliquée à l’équation des milieux poreux, pour laquelle nous obtenons de nouvelles contractions. Cette méthode ouvre de nouvelles directions de recherche à explorer.
منابع مشابه
Partial Differential Equations The method of differential contractions
In this Note we present a general and fairly simple method to design families of contractions for nonlinear partial differential equations, either of evolution type, or of stationary type. As a particular example, we apply this method to the porous medium equation, for which we get new contractions. This method opens new directions to explore. Résumé La méthode des contractions différentielles....
متن کاملBest Proximity Point Results for Almost Contraction and Application to Nonlinear Differential Equation
Berinde [V. Berinde, Approximating fixed points of weak contractions using the Picard iteration, Nonlinear Anal. Forum {bf 9} (2004), 43-53] introduced almost contraction mappings and proved Banach contraction principle for such mappings. The aim of this paper is to introduce the notion of multivalued almost $Theta$- contraction mappings andto prove some best proximity point results for t...
متن کاملCommon fixed points of f-weak contractions in cone metric spaces
Recently, Choudhury and Metiya [Fixed points of weak contractions in cone metric spaces, Nonlinear Analysis 72 (2010) 1589-1593] proved some fixed point theorems for weak contractions in cone metric spaces. Weak contractions are generalizations of the Banach's contraction mapping, which have been studied by several authors. In this paper, we introduce the notion of $f$-weak contractions and als...
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملA New Common Fixed Point Theorem for Suzuki Type Contractions via Generalized $Psi$-simulation Functions
In this paper, a new stratification of mappings, which is called $Psi$-simulation functions, is introduced to enhance the study of the Suzuki type weak-contractions. Some well-known results in weak-contractions fixed point theory are generalized by our researches. The methods have been appeared in proving the main results are new and different from the usual methods. Some suitable examples ar...
متن کامل